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Abstract—High-speed sound-synchronized photography showed details of
stridulatory movements and their relation to the sounds produced. Closing
movements were more prolonged than opening movements and generally
produced more intense sounds. Wing closures varied in rate from 10 to 250/sec.
Four species had unpredicted complexities in their stridulatory movements:
one silently snapped its wings shut after each acoustically effective stroke; two
alternated long and short wing closures; and one made repeated groups of 4 to 9
progressively changing closures.

INTRODUCTION

THE ADVENT of tape recording prompted many studies concerning the physical
characteristics of the acoustic signals of insects (BUSNEL, 1963 ; ALEXANDER, 1967).
However, the stridulatory movements responsible for these sounds were largely
neglected, perhaps because such movements were presumed to be simple and nearly
sinusoidal. Recent reports by WALKER and DEw (1972) and ELsNER (1974) have
demonstrated that insect sounds are sometimes generated by surprisingly elaborate
motor patterns, and that the details of stridulatory movements cannot be deduced
from the nature of the sounds.

Unlike many other tettigoniids, the 8 species of Neoconocephalus discussed in
this paper produce calling songs that are simple and quickly repetitious in their
amplitude modulation patterns, and one would expect minimal complexity and
variety in their stridulatory movements. I am reporting on these species rather than
others that were originally of more interest because (1) they (unlike most of the
others) occasionally continued to stridulate under the scrutiny of the high-speed
camera, and (2) their stridulatory movements proved unexpectedly complex and
varied.

MATERIALS AND METHODS

Stridulatory movements and associated sounds were recorded by a high-speed
camera on 16 mm film at speeds up to 3500 frames/sec. The camera simultaneously
photographed the stridulating insect and the face of a dual-beam oscilloscope
displaying the insect’s sound and a time standard (5 kHz square wave). Equipment
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and techniques were those described by WALKER ez al. (1970) except the top was
removed from the insect’s cage prior to filming and the output from the microphone
(12-7 mm diameter, condenser type) was fed not only to the oscilloscope but also to
a Nagra IV D sound recorder operating at a tape speed of 15 in/sec.

All individuals photographed were collected as adults and kept in a chamber
having reversed photoperiod to encourage daytime singing. When an individual
was heard stridulating, its cage was taken from the dark chamber and the lid
removed. The insect was then positioned under the camera and exposed to the
intense light required for filming. By this time, it had usually stopped stridulating
and was returned to the dark. If it had not stopped, it often did so as the camera
was started—resulting in 100 ft of film of a silent insect.

An undetected fragment of film that lodged inside the camera blocked its view
of the oscilloscope for several days with the result that the films for two species,
melanorhinus and bivocatus, had no sound or timing traces.

The successful reels were analysed by the first and sometimes the second of these
two methods: (1) Viewing at 1 to 24 frames/sec and observing the wing movements
and their relation to the oscilloscopic trace of the sound. (The sound trace was 5
frames behind the movement because of the design of the camera.) (2) Frame-by-
frame measuring of wing separation and of the maximum displacement of the
oscilloscopic trace. Many films were difficult to analyse by the second method
because the wings were in poor focus or because there were no reference points on
the wings that could be used for measurements throughout a cycle of wing move-
ment. Applying dots of white paint to the wings prior to filming might have
alleviated the latter difficulty.

Preparing objective illustrations of the wing movements and their relation to
the sound was complicated by several circumstances. For example, the film speed
varied continuously during each ‘take’ (i.e. one 100-ft reel): the camera required
about 2500 frames to reach the set speed and decelerated for the remaining 1500
frames. By reference to the filmed trace of the 5 kHz square wave, film speed for
each reel was plotted as a function of frame number, and this graph was used to
convert the frame-by-frame measurements to a linear time scale. The dots plotted
in Figs. 2 to 13 gradually spread or close in keeping with slowing or accelerating of
the film. The oscillograms (made with a Honeywell Model 2106 Visicorder) in
Figs. 2 to 13 have a linear time scale because they were made from the Nagra IV D
tapes. These tapes were made as the stridulating insect was filmed, but except with
exiliscanorus and in some instances with #riops I found no way to match a specific
phonatome with its actual cycle of wing movement. (Phonatome is the acoustical
unit corresponding to a cycle of wing movement. Some katydids produce two or
more types of phonatomes (WALKER and Dew, 1972), but except for triops, each
species discussed here produces sequences of a single type of phonatome.) How-
ever, which part of a phonatome corresponded with which part of a cycle of wing
movement was evident from both visual and frame-by-frame analysis. The phase
relationships of the oscillograms and the wing movement plots were adjusted
accordingly. Since the films for melanorhinus and bivocatus had no sound traces, the
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phase relations within Figs. 2, 3, and 7 had to be based on comparisons with other
species.

RESULTS
Eight species were photographed. Individuals of two other species, N. palustris
and N. velox, stridulated in the laboratory but always stopped during the prelimin-
aries of filming.
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Fic. 1. Oscillograms showing song patterns of 8 species of Neoconocephalus.
(A to E) Species that generally produce their phonatomes without pause for
minutes at a time. (F to H) Species that pause regularly many times per minute.
Numbers in parentheses after species names indicate phonatomes per sec and
phonatome sequences per min. Species (B) and (G) have two acoustically effective
wing closures per phonatome. Species (G) starts each sequence with one type
phonatome and then shifts to a second, faster type. Species (H) makes 6 to 7
acoustically effective wing closures per phonatome at a rate of 80/sec. Tempera-
tures 21 to 27°C.

Fig. 1 illustrates the overall amplitude modulation patterns of the calling songs
of the 8 species. N. ensiger, bivocatus, melanorhinus, retusus, and robustus (Fig.
1A-E) produce songs that the human ear hears as continuous rattles, buzzes, or
whines; in each case the wing-movement cycles are repeated for 1 min or more
without interruption. The cycles, and the phonatomes they generate, are at nearly
constant, though temperature-dependent, rates ranging between 10 and 200/sec.
N. nebrascensis (Fig. 1F, 21°C) produces phonatomes at a rate of 165/sec but stops
(and starts) production in a stereotyped fashion 31/min. N. triops (Fig. 1G, 27°C)
interrupts its song with brief pauses 69/min. During the first 50 to 100 msec of
each phrase it shifts from one type phonatome with a rate of 110/sec to another type
phonatome with a rate of 125/sec. N. exiliscanorus (Fig. 1H, 25°C) produces
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Fics. 2 to 13. Stridulatory movements (dots) and oscillograms of calling songs of
Neoconocephalus. (The higher the dots the more the wings are apart; and the
lower the dots the more nearly closed are the wings. The oscillograms were
prepared from tape recordings made during filming. Phase relationships between
stridulatory movements and oscillograms have been adjusted to agree with frame-
by-frame analysis of the film, including its sound trace. In most instances the
particular phonatomes illustrated were not produced by the particular wingstrokes
illustrated. For further details, see text.) Figs. 2 and 3. Two individuals of N.
melanorhinus. Figs. 9 and 12. Portions of a single film of one N. triops. (Figs. 8
and 13 are of two other individuals.) Figs. 12 and 13. The B phonatomes are
further classified as initial (B’), medial (B”"), and terminal (B’").

rhythmic buzzy chirps at a rate of 185/min. Major modulations within each chirp,
at first thought to be phonatomes, occur at 80/sec.

Although all rates are highly temperature dependent (WALKER, 1974), the
amplitude modulation patterns do not change. The rate at a given temperature and
amplitude modulation pattern are species specific. Intraspecific variation in the
characteristics of the calling song is slight.

The wing movements during calling are described below.

N. melanorhinus (Figs. 2 and 3) moves its wings in nearly sinusoidal fashion and is
acoustically effective in both opening and closing movements. The closing move-
ments are noticeably slower than the opening ones, but the sounds made by closing
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and opening are of approximate equal amplitude (at least below 20 kHz, the upper
limit of flat response of the Nagra IV D). The terminology proposed by Morris
and P1pHER (1972) is useful here. They note the existence of two pulse types in
katydid songs. One is a rapid-decay pulse, a brief complex wave train of rapidly
decreasing amplitude, and the other is a prolonged pulse, a wave train of relatively
longer duration and uniform or smoothly changing frequency that approximates a
pure tone. Closure in N. melanorhinus is essentially a single prolonged pulse.

N. nebrascensis (Fig. 4) and N. retusus (Fig. 5) apparently have stridulatory
movements and related sounds comparable to melanorhinus. Cinematographic
projection of the films showed regularly repeated wing movements with closure
sounds including prolonged pulses. However, none of the films of these two species
were of sufficient quality to give repeatable frame-by-frame measurements.

N. robustus (Fig. 6) is yet another species having simple wing movements. It
differs from the others in having a higher phonatome rate (200/sec) and in the fact
that the prolonged pulses (one per closure) generally dominate the calling song to
such an extent that the aural impression is that of a penetrating whine.

N. bivocatus (Fig. 7) is morphologically so similar to robustus that the two were
considered a single species until recently (WALKER et al., 1973). Its wing move-
ments are distinctive: long and short closures alternate and single prolonged
pulses are produced during closures of both types. In spite of the different closure
distances, successive prolonged pulses are similar in duration. The adjacent
opening movements are more dissimilar than the adjacent closing movements—a
longer (of greater amplitude) and slower (less distance moved per unit time)
opening stroke is followed by a shorter and quicker one. The result is that the
closure sounds occur in pairs. Since a cycle of wing movements is completed only
after a long opening, a short closing, a short opening, and a long closing, the
phonatome of bivocatus includes the sounds associated with all four movements.

N. triops (Figs. 8, 9, 12, 13) produces two types of phonatomes during each of
its rhythmically repeated 1-sec bursts of singing. Each burst begins with a brief
series of apparently unpaired trains of rapid-decay pulses produced on closing at a
rate of approximately 220 trains/sec. These are labelled as ‘A’ phonatomes in Figs.
12 and 13. The remainder of each burst consists of ‘B’ phonatomes (Figs. 8, 9, 12,
13) in which closure pulse trains of two intensities alternate and the total rate is
approximately 250/sec (i.e. 125 pairs/sec). The more intense closure pulse trains
are dominated by single prolonged pulses while the less intense ones generally
resemble those of the A phonatomes—i.e. trains of rapid-decay pulses. The cycles
of wing movements responsible for A phonatomes resemble those of robustus, but
careful scrutiny reveals that alternate cycles are more closely similar than consecu-
tive cycles (Figs. 12, 13). Therefore, a complete cycle of A-type wing movement
involves two closures, and A phonatomes have two closure pulse trains (cf.
bivocatus). The sequence of A phonatomes is sometimes preceded by silent wing
movements, and the intensity of the closure pulse trains increases during the
sequence. The cycles of wing movement responsible for B phonatomes resemble
those of bivocatus except that the long opening is at approximately the same speed
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as the short one with the result that the two closure pulse trains of a phonatome are
only slightly closer together than the adjacent closure pulse trains of consecutive
phonatomes. Furthermore, the pulse train of the shorter closing stroke is con-
spicuously less intense than that of the longer closing stroke and is occasionally
lacking (Figs. 12B’, 13B’, B"’). The relative lengths of short and long closures
vary in a single sequence (cf. Fig. 12B" and Fig. 9 of the same sequence) and from
individual to individual (¢f. phonatomes near the end of a sequence for the three
individuals of Figs. 8, 13, and 9 and 12).

N. ensiger (Fig. 10) produces pulse trains at the slowest rate of any of the 8
species. After a nearly silent opening movement an acoustically effective closure
generates a train of rapid decay pulses and returns the wings slightly more than
half way to the original position. Then the wings snap quickly and nearly silently
shut. Almost half of the distance moved by the wings during a phonatome has no
obvious function.

N. exiliscanorus (Fig. 11) produces buzzy chirps that consist of 4 to 9 evenly
spaced trains of rapid-decay pulses. Originally I supposed that each pulse train
was produced by a similar cycle of wing movement, but the films showed otherwise:
Each chirp is made by a series of progressively changing opening and closing
movements, and a complete cycle of wing movement includes the entire series
rather than a single opening and closing. Consequently, a phonatome in exiliscan-
orus is an entire chirp rather than the sound produced by a single open-close
movement. Wing movements of exiliscanorus show some resemblance to those of
ensiger (cf. Figs. 10, 11). Each species makes its acoustically effective closures
slowly and then quietly snaps its wings shut prior to brief rests.

DISCUSSION

Stridulatory movements have been described in detail for only 6 species of
Tettigoniidae, other than the 8 species just treated. PIERCE (1948) used cinemato-
graphy at 16 to 64 frames/sec to study movements of 5 species representing 4
subfamilies. Four of the species have simple cycles of wing movement (comparable
to Figs. 2-6): Scudderia curvicauda, S. texensis (Phaneropterinae), Pterophylla
camellifolia (Pseudophyllinae), Orchelimum wulgare (‘click’ type phonatome)
(Conocephalinae). The remaining species, Atlanticus testaceous (Decticinae), has
wing-movement cycles with two closures (comparable to Figs. 7-9). WALKER and
Dew (1972), using the same techniques as the present ones for Neoconocephalus,
showed that Amblycorypha uhleri (Phaneropterinae) has a different wing-movement
cycle for each of its four types of phonatomes. The most complex cycle includes a
two-step closure and a nearly silent close—open movement.

Less detailed descriptions of stridulatory movements have been published for 6
additional species. PasQUINELLY and BuUsNEL (1955) photographed a stridulating
Ephippiger bitterensis (Ephippigerinae) at 65 frames/sec. Suca (1966) removed
teeth from the stridulatory file to determine in what direction the wings were
moving during acoustically effective strokes of 4 species: Drepanoxiphus modestus
(Pseudophyllinae), 2 species of Phlugis (Listroscellinae), and Conocephalus saltator
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(Conocephalinae). Morris and PreHER (1972) studied Metrioptera sphagnorum
(Decticinae) by repeatedly photographing stridulating individuals and synchronized
ocsilloscopic traces of the sounds emitted. They demonstrated that the two types of
phonatomes of this species are produced by cycles of movement at opposite ends of
the file. One of the types is apparently made by 5 to 8 stops and starts of the
apparatus during a single closure—resembling N. exiliscanorus (Fig. 11) but with
stops rather than partial returns separating the stages of closure.

The strongest generalization that emerges from the sample of 20 species, 11
genera, and 7 subfamilies is that a diversity of stereotyped wing-movement
patterns produce tettigoniid phonatomes. At least 6 qualitatively different patterns
occur, and 4 of these are represented among the 8 species of Neoconocephalus. Single
species may have two or more patterns (e.g. M. sphagnorum, A. uhleri), and the
same complex pattern may occur in phyletically distant species (e.g. N. bivocatus
and A. testaceous). The variety of wing movements known contrasts with the fact
that a single pattern of wing movement is sufficient to produce hundreds of species-
specific calling songs. For instance, the simplest pattern—an uninterrupted
opening movement followed by an uninterrupted closing movement—can produce
prolonged or decay pulses or both, can be made acoustically effective to varying
degrees on opening, closing, or both, and can have opening and closing movements
of varying durations and speeds. Furthermore, with any particular cycle of wing
movement and its associated phonatome, distinctive calling songs can be made with
different phonatome rates, different phonatome groupings, and different intervals
between phonatome groupings. A variety of wing-movement patterns is not
prerequisite to a variety of calling songs. Nevertheless, wing-movement patterns
have been subject to frequent evolutionary change. The raw material for such a
change is intraspecific variation, as illustrated in this paper with N. melanorhinus
and N. triops. JosePHSON and HALVERsON (1971) and WALKER et al. (1973)
provide myophysiological and behavioural evidence of such variation in N.
robustus.

A second generalization, previously proposed by Morris and PipHER (1972),
is that the most prolonged song components are produced on closure. In the
species studied thus far the ratio of the durations of closing and opening varies
from more than 4 : 1 (4. uhleri, Type I phonatome) to nearly 1 : 1 (N. melanorhinus).

Morris and PipHER (1972) also suggested that the most intense song compon-
ents are produced on closure. This is usually the case but sounds made on opening
vary in intensity from near zero (e.g. Phlugis spp.; N. ensiger) to moderate (e.g. C.
saltator, M. sphagnorum), to approximately the same intensity as closing sounds
(e.g. A. uhleri, Type I phonatome; N. melanorhinus).

"The carrier frequencies of tettigoniid calling songs are apparently determined
more by the physical characteristics of the stridulatory apparatus than by wing-
movement patterns; however, during prolonged pulses tooth contact rate and
dominant frequency coincide and speed of wing movement becomes a function of
tooth spacing and tegminal resonance (BAILEY, 1970; BAILEY and BROUGHTON,
1970; Morris and PrPHER, 1972).
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Too little is known to allow reconstructing the phylogeny of the diverse
movement patterns of stridulating tettigoniids, but knowing the movements can
prevent false homologies of amplitude modulation patterns and provide clues to
evolutionary relationships. If the neurophysiological bases of the wing move-
ments were known, another layer of false homology might be revealed. However,
neurophysiologists have thus far studied only species with simple movements
(eg. BENTLEY, 1969; KuTscH and HUBER, 1970; JosepHSON and HALVERSON, 1971).
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